Министерство образования и молодежной политики Рязанской области

Областное государственное образовательное профессиональное учреждение «Ряжский колледж имени Героя Советского Союза А.М. Серебрякова»

Методические указания по выполнению лабораторных работ по дисциплине: «Метрология и стандартизация»

Разработала

преподаватель Арсагова Н.В.

Содержание

Аннотация.

Методические указания разработаны в соответствии с ФГОС по специальности 23.02.04 Техническая эксплуатация подъемно-транспортных, строительных, дорожных машин и оборудования.

В методической разработке содержится теоретический материал, методические указания по выполнению лабораторных работ, а также варианты заданий для студентов.

Методические указания могут использоваться студентами техникума и преподавателями, ведущими эту дисциплину.

Пояснительная записка.

Выполнение лабораторных работ студентами, в соответствии с ФГОС направлено на формирование умений:

- оформлять проектно-конструкторскую документацию;
- технологическую и другую техническую документацию в соответствии с требованиями стандартов;
- применять требования нормативных документов к основным видам продукции (услуг) и процессов;
- использовать основные положения стандартизации в профессиональной деятельности;
- применять стандарты качества для оценки выполненных работ.

В дальнейшем эти умения позволят сформировать профессиональные компетенции.

Общие компетенции формируются при выполнении работ отдельными микро коллективами (командами):

- ОК6. Работать в коллективе, команде, эффективно общаться с коллегами, руководством, потребителями;
- ОК 7. Брать на себя ответственность за работу членов команды (подчинённых), результат выполнения заданий.

При выполнении индивидуального задания в лабораторной работе формируется:

• ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

Методические указания разработаны по каждой лабораторной работе и содержат примеры для ее выполнения , необходимый справочный материал и 30 вариантов заданий.

Зачет после выполнения лабораторных работ выставляется по результатам защиты каждой работы.

Перед выполнением лабораторной работы, необходимо внимательно изучить указания по ее выполнению, прорешать пример и еще раз изучить теоретический материал.

Лабораторная работа выполняется по вариантам, которые соответствуют порядковому номеру в журнале.

Работы выполняются в специальной (рабочей) тетради .

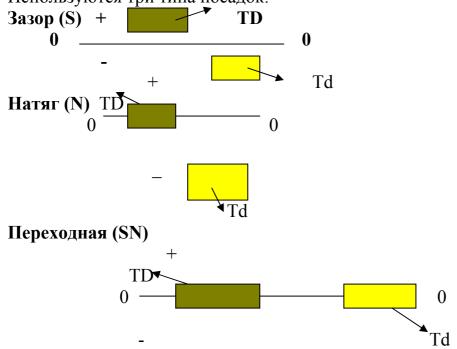
Все формулы и расчеты , а также необходимые пояснения заносятся в тетрадь. Критерии оценки за выполненную работу :

- Правильность расчетов, измерений;
- Своевременность сдачи работы;
- Качество оформления и защиты.

Лабораторная работа №1

Определение параметров посадок гладких цилиндрических соединений

Цель лабораторной работы: научиться пользоваться ГОСТом по выбору отклонений для различных типов посадок, строить поля допусков и рассчитывать параметры посадок и делать вывод об использовании посадки в соединении.


Сформировать:

ПКЗ.2 Осуществлять контроль за соблюдением технологической дисциплины при выполнении работ

ОК 2 Организовывать собст

Теоретический материал:

Посадки гладких цилиндрических соединений выполняются в одной из систем: отверстия (основное отклонение H) или вала (основное отклонение h) Используются три типа посадок:

Образец выполнения лабораторной работы:

Определите параметры посадки соединения поршневой палец – бобышка $\emptyset 10 \ \underline{q7}$

1.Выполнение работы начинаем с записи задания в лабораторной тетради, при этом задание вписываем в графу 1 таблицы (приложение №1)

- 2.Проставим в графе 2 буквенные выражения допусков отверстия в бобышке /отверстие/ Ø10 G7 и пальца /вала/ Ø10 h6.
- 3.По таблицам ГОСТ 25347 89 /Методическое пособие контрольные работы/ определим отклонения в цифровом выражении, предварительно определим систему, в которой выполнена посадка (в нашем случае h6 система вала)

В пособии /Контрольные работы/ находим таблицу 10 /система вала/.

Отклонения находим следующим образом для вала Ø10 h 6.

а/по вертикали находим интервал, в который входит этот размер – св. 6 до 10

б/ по горизонтали находим h6

в/ на пересечении этих строк находим отклонения св. 6 до 10 - 0 т.е.

верхнее отклонение es = 0, нижнее отклонение ei = -9мкм , сразу переведем отклонение в мм т.е. -9:1000=-0,009 мм

Таким образом можно записать Ø10_{-0.009}

В таблице 11 находим отклонения для отверстия Ø10 G7

а/ по вертикали находим интервал Ø 10 св. 6 до 10 мм

б/ по горизонтали G 7

в/ на пересечении строк находим ES= +20

$$EI = +5$$

поэтому можно записать Ø10^{+0,020} + 0,005

- 4.Полученные из таблиц данные заносим в 4 графу цифровое обозначение посадки на рабочем чертеже.
- 5. Далее в таблице производим расчет параметров посадки:
- а/ запишем отклонения отверстия и вала в 5 и 6 графы:

у отверстия: верхнее +0,020

нижнее +0,005

у вала : верхнее 0

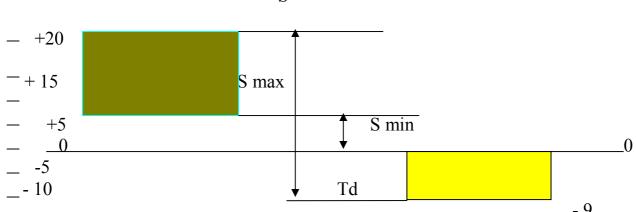
нижнее -0,009

б/ рассчитываем предельные размеры отверстия и вала и занесем значения в графы 7 и 8

$$D_{\text{max}} = D + ES = 10 + (+0.020) = 10.020 \text{ MM}$$

$$D_{min} = D + EI = 10 + (+0.005) = 10.005 \text{ MM}$$

$$d_{\text{max}} = d + e_{\text{S}} = 10 + 0 = 10 \text{ MM}$$


$$d_{min} = d + ei = 10 + (-0, 009) = 9,991 \text{ MM}$$

в/ рассчитываем допуски вала и отверстия и занесем в графу 9

$$TD = ES - EI = +0.020 - (+0.005) = 0.015 \text{ MM}$$

$$Td = es - ei = 0 - (-0,009) = 0,009 \text{ MM}$$

г) прежде, чем рассчитывать параметры посадки определите ее тип построив поля допусков

в нашем случае посадка с зазором, поэтому в графе 10, 11 ставим прочерки и далее определим:

$$S_{\text{max}} = ES - ei = +0,020 - (-0,009) = 0,029 \text{ MM}$$

$$S_{min} = EI - es = +0,005 - 0 = 0,005 \text{ mm}$$

$$TS = S_{max} - S_{min} = 0,029 \text{ MM} - 0,005 = 0,024 \text{ MM}$$

или
$$TS = S_{max} - S_{min} = 0.015 + 0.009 = 0.024 \text{ мм},$$

полученные результаты занесем в графы 12, 13, 14

 $\rm д/\ B\ 15\$ графе запишем квалитеты точности Ø10 G 7 т. е. отверстие изготовлено в 7квалитете точности.

Ø10 h 6 т.е. 6 квалитет точности

е/ построить поля допусков вала и отверстия и указать на чертеже предельные зазоры.

Вывод: для соединения поршневой палец- отверстия в бобышках поршня использовать посадку з зазором нельзя т.к. палец будет проворачиваться и будет разбиваться посадочное место в результате вибрации.

ПОДСЧЕТ ПРЕДЕЛЬНЫХ РАЗМЕРОВ СОПРЯЖЕНИЙ

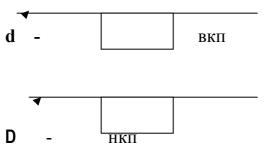
Приложение №1

Обозн	ачение вы	бранной поса	адки	Откло	нение	Преде	льные	Допус	Нат	ГЯГИ	Заз	оры	Допус	Ква
				(B I	им)	разме	еры (в	КИ					ки	ЛИ
		,				M	м)						посадки	тет
Букве	ное	Цифро	рвое						наиб.	наим.	наиб.	наим.		
На	На	На	На											
сборочном	рабочем	сборочном	рабочем											
чертеже	чертеже	чертеже	чертеже											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Отверс		Отверс	+0,020	+0,005	10,020	10,005	0,015						
	тие		тие											
			+0,020											
G7	Ø10G7	+0,020	Ø10											
		+0,005	+0,005											7
Ø10		Ø10							-	-	0,029	0,005	0,024	
h 6									-	-				
	Вал	-0,009	Вал	0	-0,009	10	9,991	0,009						6
	Ø10 h 6		Ø10											
			-0,009											

Задания для лабораторной работы № 1 Определите параметры посадки поршневой палец – отверстия в бобышках поршня , рассчитав все размеры соединения и сделайте вывод о возможности применения этой посадки.

Nº	Задание	№	Задание
варианта		варианта	
1	Ø100 <u>F7</u>	16	Ø20 <u>P7</u>
	h7		$\overline{h6}$
2	Ø10 <u>H7</u>	17	Ø140 <u>E7</u>
	is 8		h6
3	Ø20 <u>H7</u>	18	Ø40 <u>R7</u>
	h7		h6
4	Ø60 <u>G7</u>	19	Ø50 <u>F7</u>
	h7		h6
5	Ø130 <u>Is8</u>	20	Ø60 <u>H7</u>
	h6		e6
6	Ø20 <u>F7</u>	21	Ø20 <u>P7</u>
	h6		h6
7	Ø120 <u>H7</u>	22	Ø10 <u>E7</u>
	h6		h7
8	Ø70 <u>F7</u>	23	Ø70 <u>P7</u>
	h6		h8
9	Ø20 <u>E7</u>	24	Ø10 <u>H8</u>
	h6		k6
10	Ø50 <u>H7</u>	25	Ø30 <u>H7</u>
	r6		is7
11	Ø100 <u>H7</u>	26	Ø50 <u>H7</u>
	e6		e7
12	Ø90 <u>H7</u>	27	Ø90 <u>H7</u>
	r6		f7
13	Ø20 <u>Is7</u>	28	Ø70 <u>H6</u>
	h8		is7
14	Ø40 <u>H11</u>	2	Ø50 <u>H7</u>
	r11		h7
15	Ø90 <u>H7</u>	30	Ø120 <u>H7</u>
	h6		r7

Лабораторная работа №3


Определение параметров посадок с подшипниками качения

Цель лабораторной работы: научиться назначать поля допусков и квалитеты на детали сопрягаемые с подшипниками (вал и отверстие в корпусе), пользоваться ГОСТ 25346-82, СТ СЭВ 145-75,ГОСТ 8338-75 по выбору отклонений на посадочные места и для выбора отклонений на кольца подшипника, строить поля допусков и рассчитывать параметры посадок для подшипника с сопрягаемыми поверхностями и сделать вывод о способах разборки полученного соединения с подшипниками качения.

Теоретический материал:

1.Посадки деталей с подшипниками качения выполняются в одной из систем: отверстия H (по внутреннему кольцу) или вала h (по наружному кольцу).

Необходимо помнить, что несмотря на разные системы, поля допусков и по наружному и внутреннему кольцу расположены под нулевой линией (в «минус»)

2. Назначение полей допусков и квалитетов на посадочные места (вал и отверстие в корпусе) зависят от вида нагрузки и размеров колец. Для назначения таких полей используют рекомендуемые в таблице 1; квалитет назначают в зависимости от точности изготовления подшипника (см. Примечание к таблице 1)

Порядок выполнения работы:

- 1. Прежде чем, начать расчет посадок содержащихся в задании, внимательно изучите пример, приведенный в инструктивной карте.
- 2. Расчет по индивидуальному заданию.

Пример.

Исходные данные : 1.подшипгник № 204

2.вид нагрузки колец подшипника – местная,

спокойная

1. Определим размеры колец подшипника по таблице 2.

- d-20 mm; D-47 mm; b-14 mm
- 2.По таблице 6 выберем отклонения размеров колец подшипников.
 - Внутреннее кольцо (находим размерный интервал св.18 до 30) ES= 0

EI = -10 MKM

- Наружное кольцо подшипника es= 0 ei= 11 мкм
- 3. Выберем из приложения 1, рекомендуемые поля допусков при таком нагружении:
 - Вал h; отверстие в корпусе G
- 4. Определим параметры посадочных мест под подшипники
 - Вал Ø 20 h 6 параметры вала определены следующим образом : диаметр соответствует диаметру внутреннего кольца подшипника, основное отклонение h принято в пункте 1, квалитет из рекомендаций в таблице 1 Примечание.
 - Отверстие в корпусе Ø 47 G 7 порядок определения параметров такой же, как и для вала
- определим отклонения посадочных мест под подшипники (порядок определения такой же как и у гцс по таблицам)

Вал es=0 ei= - 13 мкм

Отверстие ES = +25 мкм EI = +9мкм

- 5. Построим поля допусков для вала внутреннего кольца подшипника
- 6. Построим поля допусков для отверстия в корпусе наружного кольца подшипника
- 7. Определим параметры образовавшихся в соединении посадок.

По внутреннему кольцу: посадка SN

S max = 0 - (-13) = 13 MKM

N max = 0- (-9)= 9MKM

T S N = 13 + 9 = 22 MKM

По наружному кольцу подшипника : посадка S

S max = 25 - (-11) = 36 MKM

S min = 9-0=9 MKM

TS = 36-9=17 MKM

Таблица 1 Рекомендуемые поля допусков подшипников качения при местном и колебательном нагружении их колец

Вид	Размеры		Посадки		Тип
нагружения	посадочных диаметров, мм	На вал	В стальной ил корпус	и чугунный	- подшипников
			неразъемный	разъемный	
	Нагрузка сп	окойная и	ли с умеренным	ми толчками в	и вибрацией
	До 80		Н		Все типы,
	Св. 80 до 260	h.g. f	G	Н	кроме штампованных игольчатых
	«260 «500				
		f			
Местное		11		E ¥	
		нагруз	ка с ударами и Із.І	виорациеи 	
	До 80	h	15.1	Is.I	Все типы, кроме
	Св. 80 до 260		Н		штампованных и
	«260 «500	g			конических двухрядных

	До 120 Св 120 до 1600	h	Н		Роликовые конические двухрядные
		g		Is.I	
Колебательное	До 80 Св 80 до 260	k Is.I	К		Все типы

 Π р и м е ч а н и е . Квалитет основного отклонения поля допуска определяется классом точности подшипника. Например, для подшипников классов точности 0 или 6 принимают допуски IT6 для валов IT7 для корпусов.

Таблица 2 **Нормальные габаритные размеры подшипников** (ГОСТ 8338—75)

Условные обозначения подшипников	Габаритн	ные размеры, м	М	Радиус закругления фаски, мм
	внутренний диаметр	наружный диаметр	ширина (кроме конических роли- коподшипнико	
1	2	3	4	5
	Легкая серия	•	•	
204	20	47	14	1,5
205	25	52	15	1,5
206	30	62	16	1,5
207	35	72	17	2,0
208	40	80	18	2,0
209	45	85	19	2,0
210	50	90	20	2,0
211	55	100	21	2,5
212	60	110	22	2,5
213	65	120	23	2,5
214	70	125	24	2,5
215	75	130	25	2,5
216	80	140	26	3,0
217	85	150	28	3,0
218	90	160	30	3,0
220	100	180	34	3,5
		Средняя се	рия	
305	25	62	17	2,0
306	30	72	19	2,0
307	35	80	21	2,5
308	40	90	23	2,5
309	45	100	25	2,5
310	50	110	27	3,0
311	55	120	29	3,0
312	60	130	31	3,5
313	65	140	33	3,5
314	70	150	35	3,5
315	75	160	37	3.5
316	80	170	39	3,5
317	85	180	41	4,0
318	90	190	43	4,0

		Тяжелая серия		
406	30	90	23	2,5
407	35	100	25	2,5
408	40	110	27	3,0
409	45	120	29	3,0
410	50	130	31	3,5
411	55	140	33	3,5
412	60	150	35	3,5
413	65	160	37	3,5
414	70	180	42	4,0
415	75	190	45	4,0

Таблица 6 Отклонения присоединительных диаметров подшипников качения *

Номин ные диамет мм	е гры,	метра от	ения диа- гверстия пика, мкм	Номина ные диамет мм		ружного	ение на- диаметра ника, мкм
свыше	до	верхнее	нижнее	свыше	до	верхнее	нижнее
10	18	0	-8	_	18	0	-8
18	30	0	-10	18	30	0	-9
30	50	0	-12	30	50	0	-11
50	80	0	-15	50	80	0	-13
80	120	0	-20	80	120	0	-15
120	180	0	-25	120	150	0	-18
180	250	0	-30	150	180	0	-25
250	315	0	-35	180	250	0	-30
				250	315	0	-35
				315	400	0	-40
				400	500	0	-45

^{*} Класс точности 0.

Варианты индивидуальных заданий для практической работы

№ вар	No	Нагружение подшипника	№ вар	No	Нагружение подшипника
	подшипника			подшипника	
1	204	Местная нагрузка,	16	311	Местное, с ударами и
		спокойная			вибрацией
2	205	Местное, с ударами и вибрацией	17	312	Колебательное
3	207	Колебательная	18	313	Местная нагрузка,
					спокойная
4	209	Местная нагрузка,	19	314	Местное, с ударами и
		спокойная			вибрацией
5	210	Местное, с ударами и вибрацией	20	406	Колебательное
6	212	Колебательное	21	407	Местная нагрузка, спокойная
7	213	Местное, с ударами и вибрацией	22	408	Колебательное
8	214	колебательное	23	410	Местная нагрузка, спокойная
9	220	Местная нагрузка, спокойная	24	411	Колебательное
10	305	Колебательное	25	412	Местное, с ударами и вибрацией

		1						1		
11	306	Мест	ное, с ударами и вибрацией	2	26		413	Кол	ебательное	
12	307	Колебат	гельное	2	27		414		ре, с ударами и ибрацией	
13	308	Колебат	гельное	ре 28 415 Местное, с ударам						
	• • • •					ибрацией				
14	309	Мест	ное, с ударами и вибрацией				315		ельное Местная вка, спокойная	
15	310	К	олебательное	3	0		316		ое, с ударами и	
									й Колебательное	
			Задания для сам	амостоятельной работы						
№ вар	№ подшипн	ика	Нагружение		No	вар	№ подп	пипника	Нагружени	ie
			подшипника						подшипнин	ca
1	310		Колебательная		1	6	2	10	Местная нагр	узка,
									спокойная	I
2	311		Местная нагрузка,		1	7	2	11	Местное, с удар	рами и
			спокойная						вибрацией	
3	312		Колебательная		1			12	Колебательн	ная
4	313	1	Местное, с ударами	И	1	9	2	13	Местная нагр	
			вибрацией						спокойная	I
5	314		Местная нагрузка,	зка,		0	2	14	Местное, с удар	
			спокойная				вибрацией			
6	315		Колебательная		2			15	Колебательн	
7	316	1	Местное, с ударами	И	2	2	2	16	Местное, с удар	
			вибрацией						вибрацией	
8	317	I	Местное, с ударами вибрацией	И	2	3	2	17	колебательн	ioe
9	406		Местная нагрузка, спокойная		2	4	2	18	Местная нагр спокойная	узка,
10	407		Колебательная		2	5	3	05	Колебательн	
11	408	1	Местное, с ударами вибрацией	И	2			06	Местное, с удар вибрацией	рами и
12	409		виорациен Местная нагрузка, покойная		2	7	3	07	Колебательное	•
13	410		олебательная		2	8	3	08	Колебательное	
14	411		Местное, с ударами вибрацией	И	2			09	Местное, с удар вибрацией	
15	412		Местная нагрузка,		3	0	3	10	Колебательн	

спокойная

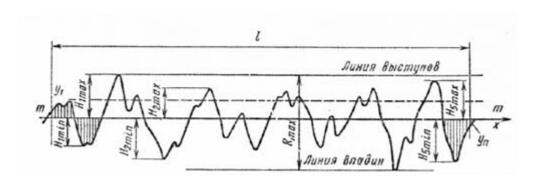
C. 20 FOCT 3325-85

													Ta6	Таблица	۱2
Виды пагру-							1100	Посадки колец	je j						
жеших			983	внутрениего на вал	38 883			_			наружн	наружного в корпус	рпус		ı
N. Company	313	3 2	212	3 2		3 8	2 9		3,6	J,7	H 2	\$ s ‡	10 Hg	5 s 6	
	2 2	2 2	회일	2 2		3 8	3 2		8 4	3 8	E Z	2 2	8 0	3 19	
1 -1	31.4		기호					-	25		원호		H8//6 H9//6		
-1-1	3 5	2 2	1,5 m5	92	2 2	10	3 5	2 2	92 49	N 8	M6	N N	8 55 55	2 2	2 8
Цирку- яционное	212	기일	#1 mg	3 5	2 2	5 1 2 8	7/2	919	1 Ne	5 S	M6	E 27	16 K6	2 2	P7 86
<u> </u>	2 2		1 m		2 2		기호		2 K		W.S		2 2		1
1	313	2 2							1,5	7					.
Колеба-	213	91 95							1,5	7.7 8			***		
	리호								7. E				_		l
The Tph x pay	Примечания: і. При частотах оликовых радиальных адку с полем допуска,	A X: PAX BP NAX DO: XA, PB	ащения дшипия сполож	Примечания: 1. При честотах вращения, превышающих предельные, для место нагруженных одиковых радизальных подшилников следует производить обработку посадочных мест валадиу с полем допуска, расположенным симметрично, относительно номинального диаметра	шающ дует п симмет	их пре рокаво рично,	дельны дить об	е, для бработк тельно	для место нагруженных ботку посадочных мест в ско воминального диамет	нагруж гочинх лъного	мест в днамет	ROJIE B G	ц шариковы корпуса под соответствии	25	. 5 6 4
Допу	скаетс	Hdii 8	необхо	Допускается при необходимости применение полей допусков ј5, ј6, Ј6, Ј7 ограниченного применения.	инфи и	еневие	полев	допуек	OB 35,	6, 36, 3	7 orpa	ниченно	но при	менени	٠

Лабораторная работа №3

Чтение рабочих чертежей деталей

Цель лабораторной работы: научиться читать рабочие чертежи деталей, на которых проставлена шероховатость.


Теоретический материал:

После обработки деталей на любых станках на поверхности детали остаются следы, которые называются шероховатостью. Шероховатость

также задается конструктором и существенно влияет на характер работы соединения, т.к. возможно изменение характера посадки (увеличится зазор при смятии, износе выступов).

Параметры шероховатости определяются путем измерения их специальными приборами.

Параметры шероховатости.

Высотные параметры шероховатости

R_а – среднее арифметическое отклонение профиля Ошибка! Ошибка внедренного объекта.

Ошибка! Ошибка внедренного объекта. R_z — высота неровностей профиля по 10 точкам

Ошибка! Ошибка внедренного объекта.

Шаговые параметры шероховатости

S — средний шаг неровностей профиля по вершинам Ошибка! Ошибка внедренного объекта.

S_m – средний шаг неровностей профиля по средней линии Ошибка! Ошибка внедренного объекта.

На рабочем чертеже, чем больше проставлено параметров шероховатости, тем более ответственно изготовлена деталь.

Обозначение шероховатости на рабочих чертежах.

 $\sqrt{\ }$ - шероховатость может быть получена любым способом, т.к не указывается конструктором.

17

- **—** шероховатость получена путем снятия слоя металла
- $^{\circ}/$ шероховатость получена без снятия слоя металла

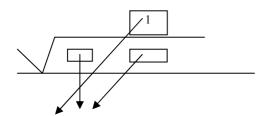


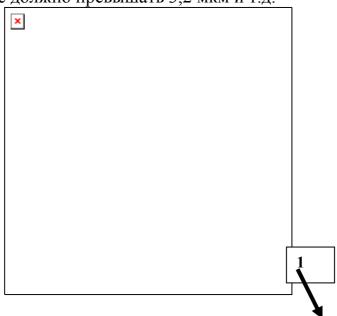
Рис 11

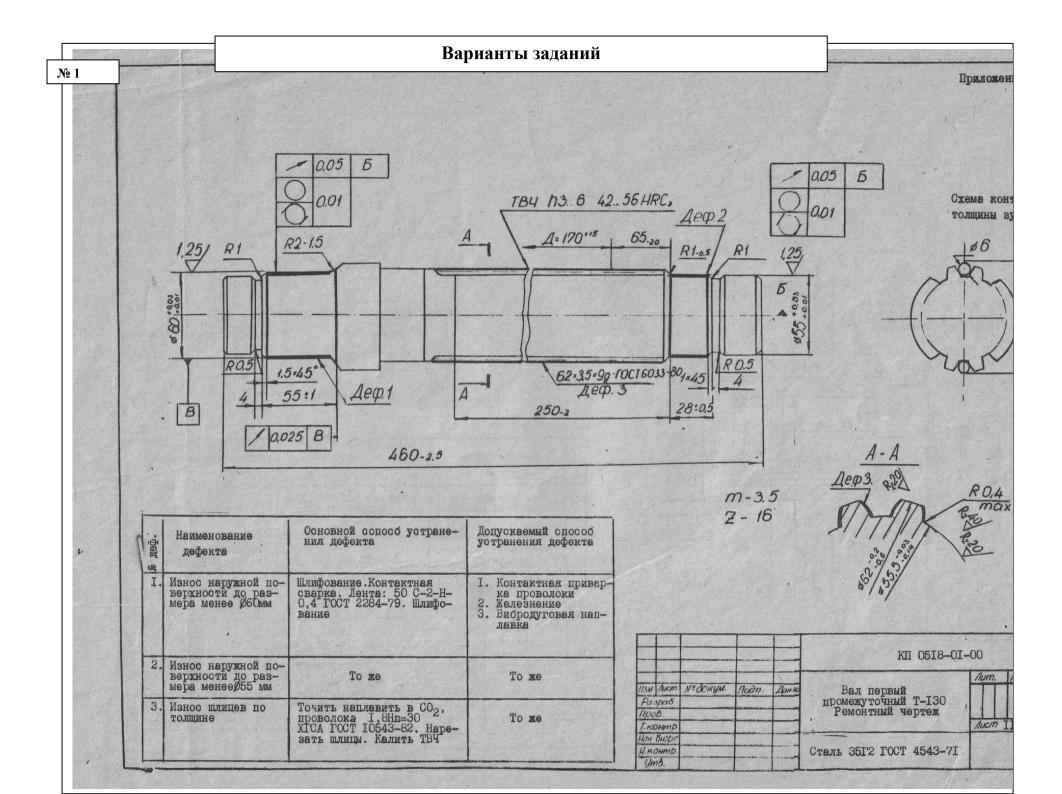
2 3

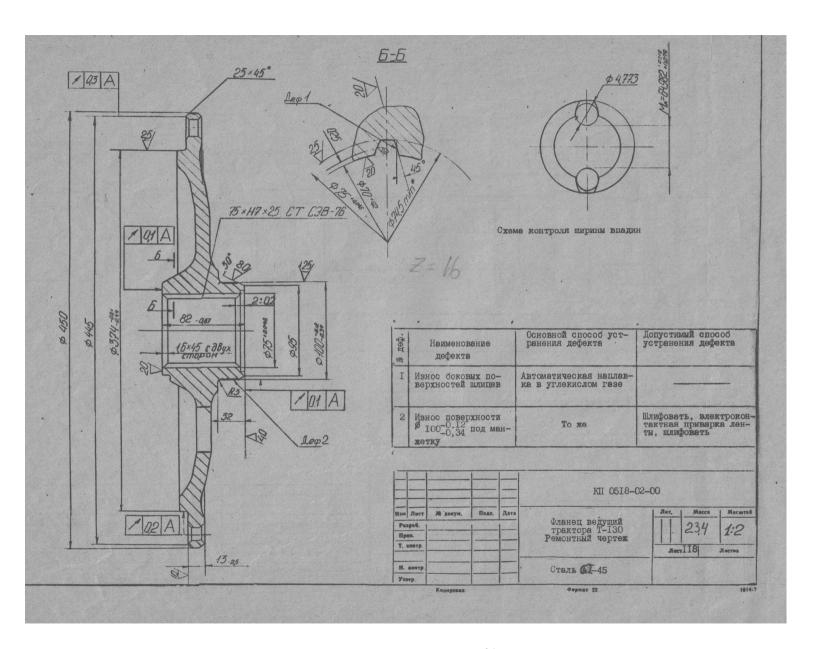
- 1. Способ обработки поверхности или другие дополнительные указания
 - 2. Условные обозначения направления шероховатости
 - 3. Базовая длина

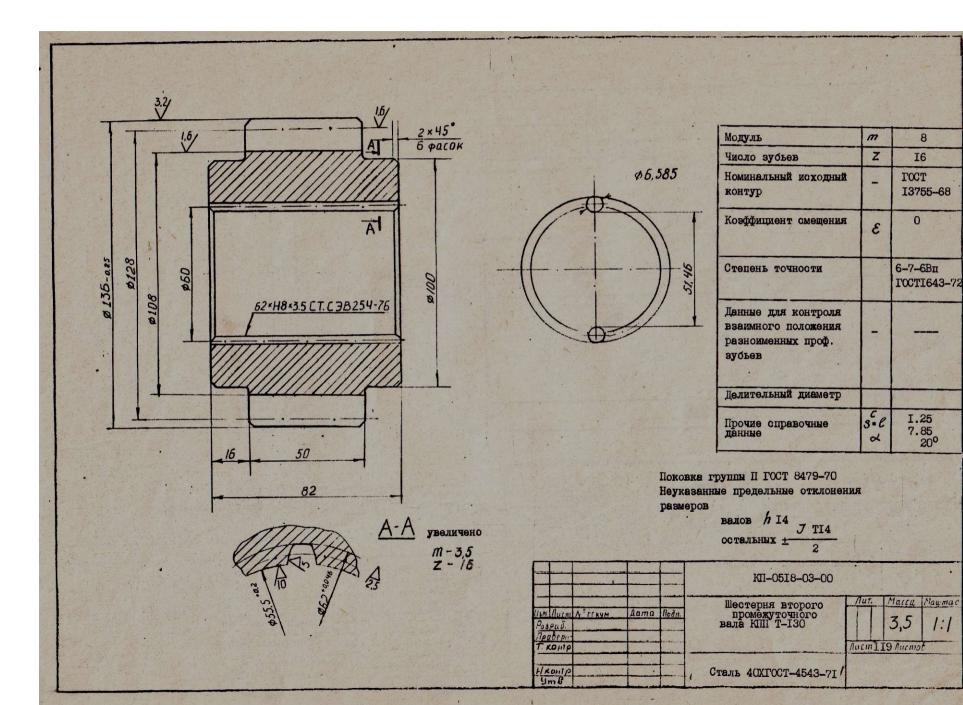
Примеры обозначения направления шероховатости.

Таблица 2


y	словные с	оозначения н	аправления не	ровностеи	l
ине нерові	-	Обозначение на чертеже	Схематическо жение нерог		Обозначение на чертеже
Section 2002 of the control of the c	Парал- лельное	<u> </u>		Круговое	To Taminini
	Перпен- дикуляр- нос	Ann i ma.		Радиаль- ное	Janana.
	Перекре- щиваю- щееся	rhaanaa.		Точечное	Ammun.
	Произ- вольное	Ammin.			


Порядок выполнения работы.


- 1. Внимательно прочтите теоретический материал.
- 2. Выберите индивидуальное задание по варианту.
- з. Изучите порядок выполнения работы.
- 4. Выполните работу в тетради для отчета по лабораторным работам. Пример.
- 1.Внимательно изучите деталь, обратите внимание на указание шероховатости и если в обозначении указание шероховатости дано по старому Γ OCTy, то вначале укажите, что знак 6,3 , по новому Γ OCT2.309-73 указывается $\sqrt{\text{Ra 6,3}}$
- 2. В случае, когда на чертеже (как в примере), все поверхности обозначены одинаковым способом можно написать:
 - По всем поверхностям детали конструктор не указал способ получения шероховатости;
 - Параметры шероховатости определены как среднее арифметическое отклонение профиля;


3. Далее пронумеруйте поверхности и укажите какие предельные размеры шероховатости они могут иметь:

 Поверхность № 1 – среднее арифметическое неровности профиля не должно превышать 3,2 мкм и т.д.

ОГБОУ СПО « Ряжский дорожный техникум»

Самостоятельная работа №4

Определение параметров посадок в шпоночном соединении

Цель работы:

Научиться обоснованно назначать поля допусков для деталей соединяемых шпонкой, рассчитывать параметры, полученных в соединении посадок

Учебные пособия и бланки:

- 1.Инструктивная карта.
- 2.Выдержки из ГОСТ 23360-78, ГОСТ 24068 80
- 3.Выдержки из ГОСТ СТ СЭВ 189-75
- 4.ЕСДП ГОСТ 25346-62, СТ СЭВ 145-75

Порядок выполнения работы:

- 1.Прежде чем, начать расчет посадок содержащихся в задании, внимательно изучите пример, приведенный в инструктивной карте.
- 2.Занести в самостоятельную работу: цель работы, учебные пособия и бланки.
- 3. Расчет по индивидуальному заданию.

Пример.

Исходные данные:

- 1. диаметр вала в шпоночном соединении 40 мм
- 2.конструкция шпонки призматическая
- 3. назначение (вид) соединения нагрузки умеренные, частые разборки.

1.Определим по таблице 1 приложения номинальные размеры шпоночного соединения.

Т.к. диаметр вала 40 мм, это интервал размеров св.38 до 44 мм по строчке выписываем размеры шпоночного соединения:

b*h 12* 8 мм

интервал длины шпонки от 28 до 140 мм -- примем 60 мм (принимается произвольно в указанных пределах)

глубина паза на валу t 1 - 5 мм

во втулке t 2 - 3.3 мм

2.Выберем поля допусков для шпоночного соединения из числа рекомендуемых по таблице 2 приложений.

Т.К. соединение часто демонтируется и нагрузки умеренные, то необходимо использовать свободное соединение по ширине пазов.

Паз в валу Ø 40 - H 9 отклонения : верхнее + 43 мкм ; нижнее 0

Паз во втулке \emptyset 40 – D 10 отклонения : верхнее + 120 мкм ; нижнее + 50 мкм.

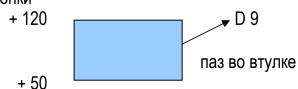
3.Примем поля допусков на другие размеры деталей по СТ СЭВ 57-73

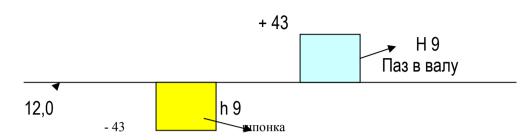
на высоту шпонки – h 11

по длине шпонки - h 14

длина паза вала – Н 15

глубина паза вала и втулки – Н 12


- 4.Заполним таблицу 1.
- 5. Отклонения на размеры (кроме ширины пазов) примем по ЕСДП также, как и у гцс (по таблицам 8,9,10,11)
- 6.Рассчитаем предельные размеры всех элементов шпонки табличным способом, используя формулы :


 $D \max = D + ES$

 $D \min = D + EI$

TD = ES - EI

7.Вычертим поля допусков по ширине шпонки

8. Рассчитаем параметры соединений

шпонка – вал

посадка с зазором (S) Smax= ES – ei = 43 – (- 43) = 86 мкм

Smin = EI – es =0- 0 = 0 мкм

TS = Smax - Smin = 86 - 0 = 86 MKM

Шпонка – втулка

Smax= ES - ei = 120 - (- 43) = 163 мкм

Smin = EI – es =50- 0 = 50 мкм

TS = Smax – Smin = 163 – 50 = 113 мкм

Наименование	Номинальный	Поле	Преде	льные	Преде	льные	Допуск
размера	размер	допуска	отклоне	ения, мм	размер	ры, мм	размера
			верх	жин	max	min	Т,мм
Ширина шпонки	12	h9	0	-0,043	12	11,957	0,043
Высота шпонки	8	h 11	0	-0,090	8	7,910	0,090
Длина шпонки	60	h 14	0	-0,740	60	59,260	0,740
Ширина паза вала	12	H 9	0	+0,043	12	12,043	0,043
Глубина паза вала	5	H 12	+0,120	0	5,120	5	0,120
Длина паза вала	60	H 15	+1,20	0	61,20	60	0,120
Ширина паза втулки	12	Д 10	0,120	+0,050	12,120	12,050	0,070

Приложения.

Основные размеры соединений с призматическими шпонками, мм

Таблица 1

Таблица 1

(по СТ СЭВ 189-75)

			/-	10 C1 COD 107 73)	
Диаметр	b x h	Интервал	ы длин L	Глуби	на паза
вала D		ОТ	до	На валу t ₁	Во втулке t2
Св. 12 до 17	5 x 5	10	56	3,0	2,3
» 17 » 22	6 x 6	14	70	3,5	2,8
» 22 » 30	8 x 7	18	90	4,4	3,3
» 30 » 38	10 x 8	22	110	5,0	3,3
» 38 » 44	12 x 8	28	140	5,0	3,3
» 44 »50	14 x 9	36	160	5,5	3,8
» 50 » 58	16 x 10	45	180	6,0	4,3
» 58 » 65	18 x 11	50	200	7,0	4,4
» 65 » 75	20 x 12	56	220	7,5	4,9
» 75 » 85	22 x 14	63	250	9,0	5,4
» 85 » 95	25 x 14	70	280	9,0	5,4
» 95 »110	18 x 16	80	320	10,0	6,4
»110 » 130	32 x 18	90	360	11,0	7,4

Таблица 2

Поля допусков _и предельные отклонения (мкм), сомнений с призматическими и клиновыми шпонками (по' ГОСТ 21360-78 ГОСТ 24068-80)

								10(124000-00)					
Диамет	Сечение	Виды соединения призматических шпонок					Глубина пазов						
p вала d ,	шпонки b х h,	по ширине пазов Б											
MM	MM						на валу t_1 на втулке t_2 для шпонки			ки			
						Но ми	Пре-						
		Свободн	юе	Нормальное		Плотное	наль- дельное		призматической		клиновой		
		Вал+	Втулка +	Вал	Втулка	Вал и в	ная	откло-	Номи	Пре-	Номи	Предельное	
		(H9	(Д10)	-(N9)	, <Д9)	гулка -		нение	наль-	дельное	наль-	отклонение	
					, , , ,	(P9)			ная	откло-	ная		
										нение			
							1,2		1,0		0.5		
Св. 6 до	2x2 3x3	+25	+60	- 4	+ 12	-6	1,8		1,4		0,9		
8 » 8 » 10	2X2 3X3	0	+20	-29	-12	-31							
								0.1		0.1		0.1	
							2.5	0,1 0	1,8	0,1 0		0,1	
» 1 0 » 1 2	4x4 5x5	+30	+78	0	+ 15	-12	2,5	0	2,3	U	1,2	U	
» 12 » 17	6x6	0	+30	- 30	-15	-42	2,5 3,0 3,5		2,3		1,2 1,7 2,2		
» 17 » 22							3,3		2,0		2,2		
Í							1		1		1		
» 2 2 » 3 0	8x7 10x8	+36	+98	0	+ 18	-15	4,0		3,.3		2,4 2,4		
» 30 » 38	on, rono	0	+40	-36	-18	-51	5,0		3,3		2,4		
1	l			l	l		j	l	I	l	l	1 1	

» 3 8 » 4 4	12x8 14x9	+43	+120	0	+21 -	-18		0,2		0,2		
» 4 4 » 5 0	16x10 18x11	0	+50	-43	21	- 61	5,0	0	3,3	0	2,4	0.2
» 5 0 » 5 8							5,5		3,8		2,9	0
» 58 » 65							6,0		4,3		3,4	
							7,0		4,4		3,4	
											1	

Варианты индивидуальных заданий для самостоятельной работы

№ вар	Диаметр	Условия работы шпоночного	№ вар	Диаметр	Условия работы шпоночного
	вала	соединения		вала	соединения
1	20	Умеренная , знакопеременная	16	60	Умеренная , знакопеременная
2	22	Умеренная , постоянная	17	50	Умеренная , постоянная
3	24	Тяжелая , знакопеременная	18	48	Тяжелая , знакопеременная
4	26	Умеренная , постоянная, частые	19	45	Умеренная , постоянная,
		разборки			частые разборки
5	28	Небольшая , постоянная	20	42	Небольшая , постоянная
6	42	Умеренная , знакопеременная	21	40	Умеренная , знакопеременная
7	48	Умеренная , постоянная	22	38	Умеренная , постоянная
8	50	Тяжелая , знакопеременная	23	36	Тяжелая , знакопеременная
9	53	Умеренная , постоянная, частые	24	34	Умеренная , постоянная,
		разборки			частые разборки
10	56	Небольшая , постоянная	25	30	Небольшая , постоянная
11	60	Умеренная , знакопеременная	26	26	Умеренная , знакопеременная
12	30	Умеренная , постоянная	27	22	Умеренная , постоянная
13	32	Тяжелая , знакопеременная	28	24	Тяжелая , знакопеременная
14	34	Умеренная , постоянная, частые	29	36	Умеренная , постоянная,
		разборки			частые разборки
15	36	Небольшая , постоянная	30	60	Небольшая , постоянная

[•] во всех вариантах шпонка призматическая

Методические указания По выполнению самостоятельной работы № 5.

Цель работы: систематизировать материал раздела «Допуски и посадки» .Необходимо составить опорный конспект по указанной форме , что позволить актуализировать знания и явится дополнительным источником при подготовке к междисциплинарному итоговому экзамену.

Рекомендации!

Перед выполнением работы, вспомните в каком виде Вы лучше запоминаете учебный материал, и в связи с этим выберите наиболее приемлемый вариант записи.

ПРИМЕР.

ГСЦ.

Параметры , определяющие	а)геометрические					
взаимозаменяемость	Можно записать : Д,d					
	Или : диаметр отверстия , диаметр вала					
	б)точность формы					
	или отклонение от круглости , цилиндричности в) \ /					

	или параметры шероховатости
Точность изготовления	а)квалитет
	б) 01, 0,1,2 18
	самый точный 01
Получение посадок	а)система H, h (отверстия, вала)
	б)типы посадок S, N ,SN
	или зазор, натяг ,переходные
	в)способ получения : путем обработки деталей по стандартным полям допусков (H / p)
Обозначение на сборочном чертеже	Ø 40 H7/ k6 или рядом с диаметром соединения указывается основные отклонения и квалитеты , по которым изготавливаются детали

Нормирование точности соединений, используемых в машиностроении

Тип <u>соединения</u>	ГЦС	Подшип-	Резьбо-вые	Шлицевые	Шпоно-	Зубча-тые	Кону-
Параметры		ники	соедине-ния	соедине-ния	Чные	колеса	Сные
					соединения		соединения
Параметры,							
Определяющие							
взаимозаменяемость							
Точность							
Изготовления							
Получение							
посадок							
Обозначение							
на сборочном							
чертеже							

Сам.раб.»М, С, С» Сам.раб.»М, С, С»